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Questions we will answer

• What is Automatic Differentiation (AD)?

• What is Automatic Sparse Differentiation (ASD)?

• Can ASD help you solve your problem?

• How can you use ASD?
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Automatic Differentiation



Flavors of Differentiation

1. Manual: work out 𝑓 ′ by hand

2. Numeric: 𝑓 ′(𝑥) ≈ 𝑓(𝑥+𝜀)−𝑓(𝑥)
𝜀

3. Symbolic: code a formula for 𝑓 , get a formula for 𝑓 ′

4. Automatic: code a program for 𝑓 , get a value for 𝑓 ′(𝑥)
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Automatic Differentiation [GW08]

• Programs are composition chains (or DAGs) of many functions

• For a composed function 𝑓 = ℎ ∘ 𝑔, the Jacobian 𝑱𝑓 |𝒙 at a point of linearization 𝒙
is given by the chain rule as

𝑱𝑓 |𝒙 = 𝑱ℎ|𝑔(𝒙) · 𝑱𝑔|𝒙

• Instead of materialized Jacobian matrices, AD uses matrix-free Jacobian operators

𝒟𝑓(𝒙) = 𝒟ℎ(𝑔(𝒙)) ∘ 𝒟𝑔(𝒙)

We represent matrix-free operators using dashed outlines, matrices and vectors with solid outlines

• Primary modes of evaluation of these operators: forward or reverse
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Forward Mode

• Computes matrix-free
Jacobian-vector products (JVPs)

• Materializes Jacobians
column-by-column

𝒟𝑓(𝒙)(𝒆𝑗) = 𝑱𝑓 |𝒙 · 𝒆𝑗 = (𝑱𝑓 |𝒙):,𝑗
,

requiring as many JVPs as the
input dimensionality of 𝑓
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Reverse Mode

• Computes matrix-free
vector-Jacobian products (VJPs)

• Materializes Jacobians row-by-row

𝒆𝑇
𝑖 · 𝑱𝑓 |𝒙 = (𝑱𝑓 |𝒙)𝑖,:

,

requiring as many VJPs as the
output dimensionality of 𝑓

• Special case: gradient of 𝑓 : ℝ𝑛 → ℝ
requires only a single VJP
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Automatic Sparse
Differentiation



Automatic Sparse Differentiation

• Requirement: sparsity in Jacobian or Hessian

• Goal: materialize Jacobian or Hessian matrices
from matrix-free operators (JVPs / VJPs/ HVPs)
‣ can be more performant
‣ more memory efficient

• Applications: 2nd-order optimization,
root-finding, implicit differentiation
‣ direct solvers can be used

instead of matrix-free solvers

• Not useful for gradients
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Key Ideas [CPR74]

Assuming we know the structure of the resulting
Jacobian matrix:

• Jacobian operators (JVPs, VJPs) are linear maps
and therefore additive

• We can simultaneously materialize multiple
structurally orthogonal columns (or rows) with a
single JVP (or VJP)

𝒟𝑓(𝒙)(𝒆𝑖 + … + 𝒆𝑗) = 𝒟𝑓(𝒙)(𝒆𝑖)⏟⏟⏟⏟⏟
(𝑱𝑓|𝒙)

:,𝑖

+ … + 𝒟𝑓(𝒙)(𝒆𝑗)⏟⏟⏟⏟⏟
(𝑱𝑓|𝒙)

:,𝑗

• We can then decompress resulting vectors into
the Jacobian matrix
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Overview of ASD

Figure from [HD25]
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Step 1:
Sparsity Pattern Detection



Sparsity Pattern Detection: Motivation

Problem: matrix-free Jacobian operators (JVPs, VJPs) are black-boxes

• without materializing Jacobian matrices, their structure is unknown

• if we fully materialize Jacobian matrices via “dense AD”, ASD isn’t needed

Solution: Implement a fast “boolean”-AD system

• compute sparsity pattern {(𝑖, 𝑗) ∣ 𝜕𝑓𝑖
𝜕𝑥𝑗

≠ 0} (“boolean Jacobian”)

• has to be faster than the computation of JVPs/VJPs ASD allows us to skip
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Propagation of Index Sets [Wal08]
Idea: Represent rows of a sparse matrix by index sets of non-zero values

Sketch of procedure:
1. Seed inputs 𝑥𝑗 with index sets {𝑗}
2. Propagate index sets through compute graph according to chain rule
3. Index set of 𝑖-th output corresponds to 𝑖-th row of Jacobian {𝑗 ∣ 𝜕𝑓𝑖

𝜕𝑥𝑗
≠ 0}
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SparseConnectivityTracer.jl [HD25]

• Jacobian and Hessian sparsity patterns
• Flexible pattern representations
• Global tracers
‣ no primal value
‣ almost no control flow
‣ fast and reusable patterns

• Local tracers
‣ include primal value
‣ support full control flow
‣ sparser patterns, not reusable

TLDR: Fast boolean ForwardDiff.jl
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Step 2:
Matrix Coloring



Graph Coloring [GMP05]

Apply graph coloring algorithms to the sparsity pattern
to group together orthogonal (non-overlapping) columns/rows

• Correctness: guarantee structural orthogonality
• Efficiency: try to form the smallest number of groups (NP-hard!)
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Coloring example: Infeasible
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Coloring example: Suboptimal

Finding optimal colorings is NP-hard
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SparseMatrixColorings.jl [MDG25]

• SotA methods from ColPack  in Julia
‣ 6x shorter than C++ code
‣ similar performance

• Data structure and caching improvements
• New bicoloring algorithms
• Python bindings for non-believers
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Further reading

• Plenty of prior work [CPR74, GR91, GW08, PT79], both on sparsity pattern
detection [DMM90, GUG95, Wal08, Wal12] and matrix coloring [GMP05]

• Basis for previous slides:
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Using ASD in Julia



DifferentiationInterface.jl



DifferentiationInterface.jl [DH25]

Common interface for most Julia AD backends:

ForwardDiff.jl

using DifferentiationInterface
import ForwardDiff

f(x) = diff(x .^ 2) + diff(reverse(x .^ 2))
x = [1.0, 2.0, 3.0, 4.0, 5.0]

jacobian(f, AutoForwardDiff(), x)

4×5 Matrix{Float64}:
 -2.0   4.0    0.0   8.0  -10.0
  0.0  -4.0   12.0  -8.0    0.0
  0.0   4.0  -12.0   8.0    0.0
  2.0  -4.0    0.0  -8.0   10.0

Enzyme.jl

using DifferentiationInterface
import Enzyme

f(x) = diff(x .^ 2) + diff(reverse(x .^ 2))
x = [1.0, 2.0, 3.0, 4.0, 5.0]

jacobian(f, AutoEnzyme(), x)

4×5 Matrix{Float64}:
 -2.0   4.0    0.0   8.0  -10.0
  0.0  -4.0   12.0  -8.0    0.0
  0.0   4.0  -12.0   8.0    0.0
  2.0  -4.0    0.0  -8.0   10.0
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Composable first-order ASD

Compose AutoSparse  backend, e.g. using Enzyme.jl,
SparseConnectivityTracer.jl and SparseMatrixColorings.jl:

backend = AutoEnzyme()

jacobian(f, backend, x) # AD

4×5 Matrix{Float64}:
 -2.0   4.0    0.0   8.0  -10.0
  0.0  -4.0   12.0  -8.0    0.0
  0.0   4.0  -12.0   8.0    0.0
  2.0  -4.0    0.0  -8.0   10.0

backend = AutoSparse(
  AutoEnzyme(),
  TracerSparsityDetector(),  # from SCT
  GreedyColoringAlgorithm(), # from SMC
)
jacobian(f, backend, x) # ASD

4×5 SparseMatrixCSC{Float64, Int64}:
 -2.0   4.0     ⋅    8.0  -10.0
   ⋅   -4.0   12.0  -8.0     ⋅
   ⋅    4.0  -12.0   8.0     ⋅
  2.0  -4.0     ⋅   -8.0   10.0

Using preparation mechanism, sparsity detection & coloring can be amortized
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Composable second-order ASD

Compute sparse Hessians by composing SecondOrder  and AutoSparse :

using Differentiationterface
using SparseConnectivityTracer
using SparseMatrixColorings
import ForwardDiff
import ReverseDiff

dense_backend = SecondOrder(
  AutoForwardDiff(), # outer backend
  AutoReverseDiff()  # inner backend
)

sparse_backend = AutoSparse(
  dense_backend,
  TracerSparsityDetector(),  # from SCT
  GreedyColoringAlgorithm()  # from SMC
)

julia> f(x) = sum(diff(x) .^ 2);
julia> x = [1.0, 2.0, 3.0, 4.0];

julia> hessian(f, dense_backend, x)
4×4 Matrix{Float64}:
  2.0  -2.0   0.0   0.0
 -2.0   4.0  -2.0   0.0
  0.0  -2.0   4.0  -2.0
  0.0   0.0  -2.0   2.0

julia> hessian(f, sparse_backend, x)
4×4 SparseMatrixCSC{Float64, Int64}:
  2.0  -2.0    ⋅     ⋅
 -2.0   4.0  -2.0    ⋅
   ⋅   -2.0   4.0  -2.0
   ⋅     ⋅   -2.0   2.0
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Composable mixed-mode ASD

ASD can be accelerated further by coloring both rows and columns, combining
forward and reverse mode [CV98, HS98, MDG25]

Compose MixedMode  ASD backend
from forward and reverse backends,
and use it in AutoSparse :

backend = AutoSparse(
  MixedMode(fw_backend, rev_backend);
  sparsity_detector,
  bicoloring_algorithm
)

jacobian(f, backend, x)
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Benchmarks



Jacobian benchmark: Discretized Brusselator PDE

• Sparsity Pattern Detection used to be the Bottleneck
• Benchmark from [Gow+19]
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Hessian benchmark: ACOPF

Hessian of Lagrangian of optimization problems from power systems
[Bab+21]
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Joint work with

Guillaume Dalle Alexis Montoison
DI, SCT, SMC SMC

Thank you for your time!
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Performant
Sparsity Pattern Detection



Revisiting Index Sets

• First-order: each scalar contains a set of indices {𝑖 | 𝜕𝑓
𝜕𝑥𝑖

≠ 0}

• Second-order: in addition to the first-order set,
each scalar contains a set of index tuples {(𝑖, 𝑗) | 𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
≠ 0}

These can be local or global.
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First-order Propagation Rules

Let 𝛼(𝒙) and 𝛽(𝒙) be two intermediate scalar quantities in the computational graph of 𝑓(𝒙).
We compute a new scalar 𝛾(𝒙) by applying the two-argument operator 𝜑:

𝛾(𝒙) = 𝜑(𝛼(𝒙), 𝛽(𝒙))

According to the chain rule,

∇𝛾 = 𝜕1𝜑 · ∇𝛼 + 𝜕2𝜑 · ∇𝛽 .

Using the indicator function 𝟏[𝑥] = 𝟏𝑥≠0[𝑥] and ∨ for element-wise OR ,
and denoting the sparsity patterns of 𝛼 and 𝛽 as 𝟏[∇𝛼] and 𝟏[∇𝛽] respectively,

𝟏[∇𝛾] ≤ 𝟏[𝜕1𝜑] · 𝟏[∇𝛼] ∨ 𝟏[𝜕2𝜑] · 𝟏[∇𝛽] .

The propagation of first-order sparsity patterns by 𝜑 only depends on two values:

𝟏[𝜕1𝜑] 𝟏[𝜕2𝜑]

Based on [Wal08], notation from [HD25]
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First-order Propagation: Example

Propagating index sets [Wal08]:

Computational graph for

𝑓(𝒙) = (𝑦1
𝑦2

) = (𝑥1𝑥2 + sign(𝑥3)
sign(𝑥3) ⋅ (𝑥4

2 ) ).

Jacobian has 3 nonzero coefficients:

𝐽𝑓(𝒙) = (
𝑥2

0
𝑥1

0
0
0

0
sign(𝑥3)

2
)
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Toy Implementation: Global sparsity detection

Operator overloading on new “tracer” number type:

import Base: +, *, /, sign

struct Tracer
  inds::Set{Int}
end

Tracer() = Tracer(Set{Int}())

+(a::Tracer, b::Tracer) = Tracer(a.inds ∪ b.inds)
*(a::Tracer, b::Tracer) = Tracer(a.inds ∪ b.inds)
/(a::Tracer, b::Int)    = Tracer(a.inds)
sign(a::Tracer)         = Tracer()  # zero derivatives
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Toy Implementation: Demonstration

Multiple dispatch: no code transformation needed

julia> f(x) = [x[1] * x[2] * sign(x[3]), sign(x[3]) * x[4] / 2];

julia> x = Tracer.(Set.([1, 2, 3, 4]))
4-element Vector{Tracer}:
 Tracer(Set([1]))
 Tracer(Set([2]))
 Tracer(Set([3]))
 Tracer(Set([4]))

julia> f(x)
2-element Vector{Tracer}:
 Tracer(Set([2, 1]))
 Tracer(Set([4]))

Matches expected pattern of 𝐽𝑓(𝒙) = (
𝑥2

0
𝑥1

0
0
0

0
sign(𝑥3)

2
).
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Second-order Propagation Rules

Analogous to the previous slide, for operators 𝛾(𝒙) = 𝜑(𝛼(𝒙), 𝛽(𝒙)):
using ∨ for element-wise OR , 𝟏[𝑥] = 𝟏𝑥≠0[𝑥]

Propagation of sparsity patterns up to Hessians only depends on five
values:

𝟏[𝜕1𝜑] 𝟏[𝜕2𝜑] 𝟏[𝜕2
1𝜑] 𝟏[𝜕2

2𝜑] 𝟏[𝜕2
12𝜑]

Based on [Wal08], notation from [HD25]
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Sparsity Pattern Detection used to be the Bottleneck

Jacobian bechmark on discretized Brusselator PDE from [Gow+19]
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DifferentiationInterface



Automatic Differentiation in Julia

From to our JuliaCon 2024 talk “Gradients for everyone”:

Julia has dozens of AD backends:
• each with different strengths, caveats ← DI can’t fix those
• each with their own syntax ← but DI can fix this

43
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DifferentiationInterface.jl [DH25]

Common interface for 13 AD backends
• Operators:
‣ high-level: gradient , jacobian , hessian , derivative ,

second_derivative
‣ lower-level: pushforward  (JVP), pullback  (VJP), hvp

• Variants:
‣ out-of-place y = f(x)  or in-place f!(y, x)
‣ with or without primal (e.g. value_and_gradient )

• “Context arguments”: constants and caches
• Preparation mechanisms
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Applications



Newton’s method

Root-finding

Solve 𝐹(𝑥) = 0 by iterating

𝑥𝑡+1 = 𝑥𝑡 − [𝜕𝐹(𝑥𝑡)]⏟
Jacobian

−1𝐹(𝑥𝑡)

Optimization

Solve min 𝑓(𝑥) by iterating

𝑥𝑡+1 = 𝑥𝑡 − [∇2𝑓(𝑥𝑡)]⏟⏟⏟⏟⏟
Hessian

−1∇𝑓(𝑥𝑡)

Linear systems involving a derivative matrix 𝐴.
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Implicit differentiation

• Differentiate 𝑥 → 𝑦(𝑥) knowing optimality conditions 𝑐(𝑥, 𝑦(𝑥)) = 0.

• Applications: fixed-point iterations, optimization problems.

• Implicit function theorem [Blo+22]:

𝜕1𝑐(𝑥, 𝑦(𝑥)) + 𝜕2𝑐(𝑥, 𝑦(𝑥)) ⋅ 𝜕𝑦(𝑥) = 0

𝜕𝑦(𝑥) = −[𝜕2𝑐(𝑥, 𝑦(𝑥))]⏟⏟⏟⏟⏟
Jacobian

−1𝜕1𝑐(𝑥, 𝑦(𝑥))

Linear system involving a derivative matrix 𝐴.
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Jacobian benchmark: Implicit Differentiation

Implitic Graph Neural Networks [Gu+20]
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