Leveraging Sparsity to Accelerate
Automatic Differentiation

Adrian Hill - BIFOLD, TU Berlin

github.com/adrhill
adrianhill.de

JuliaCon Local Paris
October 3rd, 2025

https://github.com/adrhill
https://adrianhill.de

Questions we will answer

What is Automatic Differentiation (AD)?

What is Automatic Sparse Differentiation (ASD)?

Can ASD help you solve your problem?

How can you use ASD?

Automatic Differentiation

Flavors of Differentiation

1. Manual: work out ' by hand

2. Numeric: f(z) ~ L&te)=f(@)

3

3. Symbolic: code a formula for f, get a formula for f

4. Automatic: code a program for f, get a value for f'(x)

Automatic Differentiation

- Programs are composition chains (or DAGs) of many functions

- For a composed function f = % o g, the Jacobian J;|, at a point of linearization x
is given by the chain rule as

- Instead of materialized Jacobian matrices, AD uses matrix-free Jacobian operators

Df(x) = Dhig(x)) o Dg(x)

We represent matrix-free operators using dashed outlines, matrices and vectors with solid outlines

» Primary modes of evaluation of these operators: forward or reverse

Forward Mode

- Computes matrix-free

] (]
Jacobian-vector products (JVPs) :..D:)..; =)
» Materializes Jacobians i_.__.__.__.__._j 5

column-by-column

Df(x)(e;) = Iylo - €= (Jylz) -

o
“5J

requiring as many JVPs as the
input dimensionality of f =

- Computes matrix-free
vector-Jacobian products (V)Ps)

- Materializes Jacobians row-by-row . NEn =

e;r ‘ Jf|a: = (Jf|:r:)

.
i,

requiring as many VJPs as the
output dimensionality of f

- Special case: gradient of f : R” — R
requires only a single VJP

Automatic Sparse
Differentiation

Automatic Sparse Differentiation

Requirement: sparsity in Jacobian or Hessian

Goal: materialize Jacobian or Hessian matrices
from matrix-free operators (JVPs / VJPs/ HVPs)
» can be more performant

» more memory efficient

Applications: 2nd-order optimization,
root-finding, implicit differentiation
» direct solvers can be used

Instead of matrix-free solvers

Not useful for gradients

1.47

Assuming we know the structure of the resulting B En o
Jacobian matrix: | | B
. ° : -0.58. : — -0.58

- Jacobian operators (JVPs, VJPs) are linear maps | — |
and therefore additive B Rt :

- We can simultaneously materialize multiple e
structurally orthogonal columns (or rows) with a | .i _ =
single JVP (or VJP) M EE =

l-1.0 -0.46 I -0.46

Df(x)(e;+ ... +e;) = g?f(a:)(ezz — 4 ?f(a:)(ej)

J I,, . T4l
(f >:,7, (f‘w):,j 1.85 1.85
. . m 0.97 % 0.97 m
« We can then decompress resulting vectors into o <o
the Jacobian matrix

10

Overview of ASD

(a) AD code transformation (b) Standard AD Jacobian computation

VIP(x,e;1 +e) = (L 1D
o
VIP(x,e; +e3) = (I 11]

® Matrix-vector products @ Decompression

@® Pattern detection @ Coloring

Figure from [HD25]
11

Step 1:
Sparsity Pattern Detection

Sparsity Pattern Detection: Motivation

Problem: matrix-free Jacobian operators (JVPs, VJPs) are black-boxes
 without materializing Jacobian matrices, their structure is unknown

- if we fully materialize Jacobian matrices via “dense AD”, ASD isn’t needed

Solution: Implement a fast “boolean”-AD system

x

- compute sparsity pattern { (i,7) | 2L £ 0} (“boolean Jacobian”)
8 J

- has to be faster than the computation of JVPs/VJPs ASD allows us to skip

13

Propagation of Index Sets

Idea: Represent rows of a sparse matrix by index sets of non-zero values

(a) (b) ()

Sketch of procedure:
1. Seed inputs z,; with index sets {j}
2. Propagate index sets through compute graph according to chain rule

3. Index set of ¢-th output corresponds to :-th row of Jacobian {j | ggfé % 0
14

J

SparseConnectivityTracer.jl

- Jacobian and Hessian sparsity patterns
- Flexible pattern representations
 Global tracers

» no primal value

» almost no control flow

» fast and reusable patterns
* Local tracers

» include primal value

» support full control flow

» sparser patterns, not reusable

TLDR: Fast boolean ForwardDiff.)l

Published in Transactions on Machine Learning Research (05/2025)

Sparser, Better, Faster, Stronger:
Sparsity Detection for Efficient Automatic Differentiation

Adrian Hill* hill@tu-berlin. de

BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
Machine Learning Group, Technical University of Berlin, Berlin, Germany

Guillaume Dalle* guillaume.dalle@enpc. fr

LVMT, ENPC, Institut Polytechnique de Paris, Univ Gustave Eiffel, Marne-la-Vallée, France

Reviewed on OpenReview: https://openreview.net/forum?id=GtXSN52nIW

Abstract

From implicit differentiation to probabilistic modeling, Jacobian and Hessian matrices have
many potential use cases in Machine Learning (ML), but they are viewed as computationally
prohibitive. Fortunately, these matrices often exhibit spars which can be leveraged to
speed up the process of Automatic Differentiation (AD). This paper presents advances in
sparsity detection, previously the performance bottleneck of Automatic Sparse Differentia-
tion (ASD). Our implementation of sparsity detection is based on operator overloading, able
to detect both local and global sparsity patterns, and supports flexible index set representa-
tions. It is fully automatic and requires no modification of user code, making it compatible
with existing ML codebases. Most importantly, it is highly performant, unlocking Jacobians
and Hessians at scales where they were considered too expensive to compute. On real-world
problems from scientific ML, graph neural networks and optimization, we show significant
speed-ups of up to three orders of magnitude. Notably, using our sparsity detection system,
ASD outperforms standard AD for one-off computations, without amortization of either
sparsity detection or matrix coloring.

15

Step 2:
Matrix Coloring

Graph Coloring

Apply graph coloring algorithms to the sparsity pattern
to group together orthogonal (non-overlapping) columns/rows

r ---------- I
1.85 2.21
e e -1.91 -0.46
[

 Correctness: guarantee structural orthogonality

- Efficiency: try to form the smallest number of groups (NP-hard!) 5

w
Q.
=
S
<
)
o
c
=
e
o
O

19

Coloring example: Suboptimal

&)\

(]
(&

Finding optimal colorings is NP-hard

20

SparseMatrixColorings.jl

« SotA methods from ColPack inJulia
» 6x shorter than C++ code
» similar performance
 Data structure and caching improvements
« New bicoloring algorithms
 Python bindings for non-believers

REVISITING SPARSE MATRIX COLORING AND BICOLORING

ALEXIS MONTOISON", GUILLAUME DALLET, AND ASSEFAW GEBREMEDHIN'

Abstract. Sparse matrix coloring and bicoloring are fundamental building blocks of sparse
automatic differentiation. Bicoloring is particularly advantageous for rectangular Jacobian matrices
with at least one dense row and column. Indeed, in such cases, unidirectional row or column coloring
demands a number of colors equal to the number of rows or columns. We introduce a new strategy
for bicoloring that encompasses both direct and substitution-based decompression approaches. Our
method reformulates the two variants of bicoloring as star and acyclic colorings of an augmented
symmetric matrix. We extend the concept of neutral colors, previously exclusive to bicoloring, to
symmetric colorings, and we propose a post-processing routine that neutralizes colors to further
reduce the overall color count. We also present the Julia package SparseMatrixColorings.jl, which
includes these new bicoloring algorithms alongside all standard coloring methods for sparse derivative
matrix computation. Compared to ColPack, the Julia package also offers enhanced implementations
for star and acyclic coloring, vertex ordering, as well as decompression.

Key words. graph coloring, bicoloring, post-processing, sparsity patterns, Jacobian, Hessian,
automatic differentiation, Julia

AMS subject classifications. 05C15, 65F50, 65D25, 68R10, 90C06

21

Further reading

- Plenty of prior work [CPR74, GR91, GWO0S8, PT79], both on sparsity pattern
detection [DMM90, GUG95, Wal08, Wal12] and matrix coloring [GMPO05]
» Basis for previous slides:

ICLR Blogposts 2025 about call for blogposts submitting reviewing blog past iterations ¥

An lllustrated Guide to Automatic
Sparse Differentiation

In numerous applications of machine learning, Hessians and Jacobians exhibit sparsity, a property
that can be leveraged to vastly accelerate their computation. While the usage of automatic
differentiation in machine learning is ubiquitous, automatic sparse differentiation (ASD) remains
largely unknown. This post introduces ASD, explaining its key components and their roles in the
computation of both sparse Jacobians and Hessians. We conclude with a practical demonstration
showcasing the performance benefits of ASD.

AUTHORS AFFILIATIONS

Adrian Hill BIFOLD - Berlin Institute for the Foundations of Learning and Data,
Machine Learning Group, Technical University of Berlin, Berlin, Germany

Guillaume Dalle LVMT, ENPC, Institut Polytechnique de Paris, Univ Gustave Eiffel, Marne-
la-Vallée, France

Alexis Montoison Argonne National Laboratory, Lemont, USA

PUBLISHED

April 28,2025

22

https://iclr-blogposts.github.io/2025/blog/sparse-autodiff/

Using ASD in Julia

Differentiationinterface.l

Differentiationinterface.jl

Common interface for most Julia AD backends:

ForwardDiff.jl

using DifferentiationInterface
import ForwardDiff

f(x)
X

I X

diff(x .~ 2) + diff(reverse(x .» 2))
0,

[1.0, 2.0, 3.0, 4.0, 5.0]

jacobian(f, AutoForwardDiff(), x)

4x5 Matrix{Float64}:

-2.0 4.0 0.0 8.0 -10.0
0.0 -4.0 12.0 -8.0 0.0
0.0 4.0 -12.0 8.0 0.0
2.0 -4.0 0.0 -8.0 10.0

Enzyme.jl

using DifferentiationInterface
import Enzyme

X A 2) + diff(reverse(x .*» 2))
[1.0, 2.0, 3.0, 4.0, 5.0]

jacobian(f, AutoEnzyme(), x)

4x5 Matrix{Float64}:

-2.0 4.0 0.0 8.0 -10.0
0.0 -4.0 12.0 -8.0 0.0
0.0 4.0 -12.0 8.0 0.0
2.0 -4.0 0.0 -8.0 10.0

25

Composable first-order ASD

Compose AutoSparse backend, e.g. using Enzyme.jl,
SparseConnectivityTracer.jl and SparseMatrixColorings.jl:

backend = AutoEnzyme() backend = AutoSparse(
AutoEnzyme(),
TracerSparsityDetector(), # from SCT
GreedyColoringAlgorithm(), # from SMC

)
jacobian(f, backend, x) # AD jacobian(f, backend, x) # ASD
4x5 Matrix{Float64}: 4x5 SparseMatrixCSC{Float64, Int64}:
-2.0 4.0 0.0 8.0 -10.0 -2.0 4.0 . 8.0 -10.0
0.0 -4.0 12.0 -8.0 0.0 -4.0 12.0 -8.0
0.0 4.0 -12.0 8.0 0.0 4.0 -12.0 8.0 .
2.0 -4.0 0.0 -8.0 10.0 2.0 -4.0 . -8.0 10.0

Using preparation mechanism, sparsity detection & coloring can be amortized
26

Composable second-order ASD

Compute sparse Hessians by composing SecondOrder and AutoSparse:

using Differentiationterface julia> f(x) = sum(diff(x) .~ 2);
using SparseConnectivityTracer julia> x = [1.0, 2.0, 3.0, 4.0];
using SparseMatrixColorings
import ForwardDiff julia> hessian(f, dense_backend, x)
import ReverseDiff 4x4 Matrix{Float64}:
2.0 -2.0 0.0 0.0
dense_backend = SecondOrder (-2.0 4.0 -2.0 0.0
AutoForwardDiff(), # outer backend 0.0 -2.0 4.0 -2.0
AutoReverseDiff() # inner backend 0.0 0.0 -2.0 2.0
)
julia> hessian(f, sparse_backend, x)
sparse_backend = AutoSparse(4x4 SparseMatrixCSC{Float64, Int64}:
dense_backend, 2.0 -2.0 . .
TracerSparsityDetector (), # from SCT -2.0 4.0 -2.0 8
GreedyColoringAlgorithm() # from SMC - -2.0 4.0 -2.0
) . . -2.0 2.0

27

Composable mixed-mode ASD

ASD can be accelerated further by coloring both rows and columns, combining
forward and reverse mode [CV98, HS98, MDG25]

|l 0.52| 0.67 -1.26 -0.48 1.29
[

[
[
[
I o0.91 I
' |
1]1.48 I
[
[
. |

1-1.29

Compose MixedMode ASD backend
from forward and reverse backends,
and use it in AutoSparse:

backend = AutoSparse(
MixedMode (fw_backend, rev_backend);
sparsity_detector,
bicoloring_algorithm

)

jacobian(f, backend, x)

28

Benchmarks

Jacobian benchmark: Discretized Brusselator PDE

r—\

-
e
o
|

10*2.5 _

Wall time [s]

10 —5.0 _|

—a— AD, prepared
—8— ASD, prepared
ASD, unprepared using SCT
-® - ASD, unprepared using Symbolics

« Sparsity Pattern Detection used to be the Bottleneck

« Benchmark from [Gow+19]

30

Hessian benchmark: ACOPF

1

Problem Sparsity Hessian computation

Name Inputs Zeros Colors® AD (prepared) ASD (prepared)? ASD (unprepared)?

8 Imbd 24 91.15% 6 1.82-107%* 829-107% (2.2) 145-107% (1.3)
60_c 518 99.56% 12 1.15-1071 2.36-1073 (48.6) 8.61-1072 (13.3)
240 pserc 2558 99.91% 16 351-10° 2.50-1072 (140.2) 1.04-107! (33.6)
1951 rte 15018 99.98% 20 2.00 - 102 1.54-10~1 (1293.4) 1.00-10° (199.1)
2746wp_k 19520 99.99% 14 3.53 - 102 1.77-1071 (1991.4) 1.51-10° (234.5)
3875wp_k 24350 99.99% 18 6.25-102 2.54-107' (2463.9) 1.71-10° (365.1)

1 Wall time in seconds.
2 Number of colors resulting from greedy symmetric coloring.
3 In parentheses: Wall time ratio compared to prepared AD (higher is better).

Hessian of Lagrangian of optimization problems from power systems
[Bab+21]

31

Joint work with

Guillaume Dalle Alexis Montoison
DI, SCT, SMC SMC

Thank you for your time!

\NBIFOLD ¥ /4 A g | \M T 2. Argonne &

ponTs [7 et @ 0 & Transport I NaTIONAL LABORATORY

sssssss

32

Bibliography

Babaeinejadsarookolaee, S., Birchfield, A., Christie, R. D., Coffrin, C., DeMarco, C., Diao, R., Ferris,

M., Fliscounakis, S., Greene, S., Huang, R., Josz, C., Korab, R., Lesieutre, B., Maeght, J., Mak, T. W.

K., Molzahn, D. K., Overbye, T. J., Panciatici, P., Park, B., ... Zimmerman, R. (2021, January). The
Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms. arXiv. https://doi.
org/10.48550/arXiv.1908.02788

Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S., Llinares-Lopez, F., Pedregosa, F., & Vert,
J.-P. (2022). Efficient and Modular Implicit Differentiation. Advances in Neural Information
Processing Systems, 35, 5230-5242. https://proceedings.neurips.cc/paper_files/paper/2022/
hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html

Coleman, T. F,, & Verma, A. (1998). The Efficient Computation of Sparse Jacobian Matrices Using
Automatic Differentiation. SIAM Journal on Scientific Computing, 19(4), 1210-1233. https://doi.
org/10.1137/51064827595295349

Curtis, A. R., Powell, M. J. D., & Reid, J. K. (1974). On the Estimation of Sparse Jacobian Matrices.
IMA Journal of Applied Mathematics, 13(1), 117-119. https://doi.org/10.1093/imamat/13.1.117

Dalle, G., & Hill, A. (2025). A Common Interface for Automatic Differentiation. Arxiv Preprint
Arxiv:2505.05542.

Dixon, L. C. W., Maany, Z., & Mohseninia, M. (1990). Automatic differentiation of large sparse
systems. Journal of Economic Dynamics and Control, 14(2), 299-311. https://doi.org/10.1016/
0165-1889(90)90023-A

Gebremedhin, A. H., Manne, F,, & Pothen, A. (2005). What Color Is Your Jacobian? Graph Coloring
for Computing Derivatives. SIAM Review, 47(4), 629-705. https://doi.org/10/cmwds4

Geitner, U., Utke,)., & Griewank, A. (1995,). Automatic Computation of Sparse Jacobians by
Applying the Method of Newsam and Ramsdell. https://www.semanticscholar.org/paper/
Automatic-Computation-of-Sparse-jJacobians-by-the-of-Geitner-Utke /1ed218348fff39e9642d7
b7ac38cfodd66aeas7b

Gowda, S., Ma, Y., Churavy, V., Edelman, A., & Rackauckas, C. (2019, September). Sparsity
Programming: Automated Sparsity-Aware Optimizations in Differentiable Programming.
Program Transformations for ML Workshop at NeurIPS 2019. https://openreview.net/forum?
id=rJlPdcY38B

Griewank, A., & Reese, S. (1991). On the calculation of Jacobian matrices by the Markowitz rule
(Issue ANL/CP-75176; CONF-910189-4). https://www.osti.gov/biblio /10118065

Griewank, A., & Walther, A. (2008). Evaluating derivatives: principles and techniques of
algorithmic differentiation (2nd ed). Society for Industrial and Applied Mathematics. https://
epubs.siam.org/doi/book/10.1137/1.9780898717761

Gu, F,, Chang, H., Zhu, W., Sojoudi, S., & El Ghaoui, L. (2020). Implicit graph neural networks. In H.
Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in neural
information processing systems: Vol. 33. Advances in neural information processing systems.
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53¢1842a38-Paper.
pdf

Hill, A., & Dalle, G. (2025, January). Sparser, Better, Faster, Stronger: Efficient Automatic
Differentiation for Sparse Jacobians and Hessians. arXiv. https://doi.org/10.48550/arXiv.2501.
17737

Hossain, A. K. M. S., & Steihaug, T. (1998). Computing a sparse Jacobian matrix by rows and
columns. Optimization Methods and Software, 10(1), 33-48. https://doi.org/10.1080/
10556789808805700

Montoison, A., Dalle, G., & Gebremedhin, A. (2025). Revisiting Sparse Matrix Coloring and
Bicoloring. Arxiv Preprint Arxiv:2505.07308.

Powell, M. J. D., & Toint, \. P. L. (1979). On the Estimation of Sparse Hessian Matrices. SIAM Journal
on Numerical Analysis, 16(6), 1060-1074. https://doi.org/10.1137/0716078

Walther, A. (2008). Computing sparse Hessians with automatic differentiation. ACM Transactions
on Mathematical Software, 34(1), 1-15. https://doi.org/10.1145/1322436.1322439

Walther, A. (2012). On the Efficient Computation of Sparsity Patterns for Hessians. In S. Forth, P.
Hovland, E. Phipps, J. Utke, & A. Walther (Eds.), Recent Advances in Algorithmic
Differentiation: Recent Advances in Algorithmic Differentiation. https://doi.org/10.1007/978-3-
642-30023-3_13

33

https://doi.org/10.48550/arXiv.1908.02788
https://proceedings.neurips.cc/paper_files/paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html
https://doi.org/10.1137/S1064827595295349
https://doi.org/10.1093/imamat/13.1.117
https://doi.org/10.1016/0165-1889(90)90023-A
https://doi.org/10.1016/0165-1889(90)90023-A
https://doi.org/10/cmwds4
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://openreview.net/forum?id=rJlPdcY38B
https://openreview.net/forum?id=rJlPdcY38B
https://www.osti.gov/biblio/10118065
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
https://doi.org/10.48550/arXiv.2501.17737
https://doi.org/10.48550/arXiv.2501.17737
https://doi.org/10.1080/10556789808805700
https://doi.org/10.1080/10556789808805700
https://doi.org/10.1137/0716078
https://doi.org/10.1145/1322436.1322439
https://doi.org/10.1007/978-3-642-30023-3_13
https://doi.org/10.1007/978-3-642-30023-3_13

Performant
Sparsity Pattern Detection

Revisiting Index Sets

(a)

- First-order: each scalar contains a set of indices {z | 9L o 0}

- Second-order: in addition to the first-order set,

each scalar contains a set of index tuples {(7) 852@ + O}

These can be local or global. .

First-order Propagation Rules

Let a(x) and B(x) be two intermediate scalar quantities in the computational graph of f(x).
We compute a new scalar v(x) by applying the two-argument operator ¢:

v(x) = ela(z), B(x))
According to the chain rule,

Using the indicator function 1[z] = 1,_,[z] and V for element-wise OR,
and denoting the sparsity patterns of a and 8 as 1[Va] and 1[V 3] respectively,

1[V~] < 1[01¢] - 1[Va] V 1[8,¢] - 1[V] .
The propagation of first-order sparsity patterns by ¢ only depends on two values:
1{0,0] 1[0y

Based on [Wal08], notation from [HD25]
36

First-order Propagation: Example

Propagating index sets [Wal08]:

Computational graph for
{1}
\ Outputs
i N B Yq B L1 + Slgn(3)
{2}/ /.+ T f(m) B (yQ) B (Slgn 333 (74)
B son Jacobian has 3 nonzero coefficients:

{4} \ ZUZ 33‘1 O O
\ —w— Ji(x) = ()

| 0O 0 0 s1gn(:c3)

N\

{

37

Toy Implementation: Global sparsity detection

Operator overloading on new “tracer” number type:

import Base: +, %, /, sign

struct Tracer
inds::Set{Int}
end

Tracer() = Tracer(Set{Int}())

+(a::Tracer, b::Tracer)
%¥(a::Tracer, b::Tracer)
/(a::Tracer, b::Int)
sign(a::Tracer)

Tracer(a.inds U b.inds)
Tracer(a.inds U b.inds)
Tracer(a.inds)

Tracer() # zero derivatives

38

Toy Implementation: Demonstration

Multiple dispatch: no code transformation needed

julia> f(x) = [x[1] * x[2] % sign(x[3]), sign(x[3]) * x[4] / 2];

julia> x = Tracer.(Set.([1, 2, 3, 4]))
4-element Vector{Tracer}:
Tracer(Set([1]))

Tracer(Set([2]))

Tracer (Set([3]))

Tracer(Set([4]))

julia> f(x)

2-element Vector{Tracer}:
Tracer(Set([2, 1]))
Tracer(Set([4]))

r, x; 0 0
Matches expected pattern of J;(x) = (02 01 0 Sign<x3>).
2

39

Second-order Propagation Rules

Analogous to the previous slide, for operators v(x) = p(a(x), 5(x)):

using Vv for element-wise OR, 1[z] = 1,_[z]

81 QO] . I[Vzaz]
01¢] - (1[Va] v 1[Va]')
01y] - (1[Va] v1[VB] ')

1[V3ry] <

-

< <

Ozp] - 1[V*J]
03] - (1[VB] v 1[VA] ')

0f2¢] - (1[VB] v 1[Va]')

Propagation of sparsity patterns up to Hessians only depends on five

values:

1[0,0] 1[0, 1[0fp] 1[05¢] 1[05¢)

Based on [Wal08], notation from [HD25]

40

Sparsity Pattern Detection used to be the Bottleneck

AD
ASD (Sym.) N=6
ASD (SCT) |

T T
0.000 0.002 0.004

AD
ASD (Sym.) N=12
ASD (SCT) |
I T T T T
0.000 0.005 0.010 0.015 0.020
AD
ASD (Sym.) \ N=24
ASD (SCT)
I T T T
0.00 0.02 0.04 0.06
AD
ASD (Sym.) N=48
ASD (SCT) \
I T T T
0.0 0.1 0.2 0.3
AD
ASD (Sym.) N=96
ASD (SCT)]
I T T T
0.0 0.5 1.0 1.5
AD
ASD (Sym.) N=192
ASD (SCT) |
I T T T T
0 5 10 15 20
Walltime [s]
. Sparsity detection Memory allocation and coloring . Matrix-vector products

Jacobian bechmark on discretized Brusselator PDE from [Gow+19]

41

Differentiationinterface

Automatic Differentiation in Julia

From to our JuliaCon 2024 talk “Gradients for everyone”:

TorchFoo | | TorchBar foox bax . . @ ‘ ‘ @

Enzyme Zygote Other Enzyme Zygote Other

|’)

‘.-

Foo.jl

ImI
)

Python Julia

Bar.jl

PyTorch

Julia has dozens of AD backends:
- each with different strengths, caveats < DI can’t fix those

» each with their own syntax < but DI can fix this s

https://www.youtube.com/watch?v=ww3ntpyxNtI

Differentiationinterface.jl

Common interface for 13 AD backends
« Operators:

» high-level: gradient, jacobian, hessian, derivative,
second_derivative

» lower-level: pushforward (JVP), pullback (VJP), hvp
« Variants:

» out-of-place y = f(x) orin-place f!(y, x)

» with or without primal (e.g. value_and_gradient)
« “Context arguments”: constants and caches
 Preparation mechanisms

Ly

Applications

Newton’s method

Root-finding Optimization
Solve F'(z) = 0 by Iiterating Solve min f(x) by iterating
Tpp1 =@ — [0F (z,)] " F(x,) T = — [V2f ()] Vf(z,)
Jacc‘)i)ian Heggian

Linear systems involving a derivative matrix A.

46

Implicit differentiation

- Differentiate x — y(x) knowing optimality conditions c¢(z,y(z)) = 0.
- Applications: fixed-point iterations, optimization problems.

- Implicit function theorem [Blo+22]:
0r¢(z,y(z)) + Oyc(z, y(x)) - Oy(z) =0

0y(z) = ~[Dhe(@,y(@)] " Oyelz,y(@))

Jacobian

Linear system involving a derivative matrix A.

47

Jacobian benchmark: Implicit Differentiation

Training loss

v

)

Test accurac

—— VJP (iterative solve)

Sparse Jacobian (direct solve)

<

ot

=]
1

0.25

0.00 T T

0.0 0.5 1.0

0.84 +

0.82 +

.80 \ _/

~~
-

e S

= -3

= o
1 1

T
0.0 0.5 1.0
Wall time [s]

Implitic Graph Neural Networks [Gu+20]

48

	Questions we will answer
	Flavors of Differentiation
	Automatic Differentiation
	Forward Mode
	Reverse Mode
	Automatic Sparse Differentiation
	Key Ideas
	Overview of ASD
	Sparsity Pattern Detection: Motivation
	Propagation of Index Sets
	SparseConnectivityTracer.jl
	SparseConnectivityTracer.jl
	Graph Coloring
	Coloring example: Infeasible
	Coloring example: Suboptimal
	SparseMatrixColorings.jl
	Further reading
	DifferentiationInterface.jl
	Composable first-order ASD
	Composable second-order ASD
	Composable mixed-mode ASD
	Jacobian benchmark: Discretized Brusselator PDE
	Hessian benchmark: ACOPF
	Joint work with
	Bibliography
	Revisiting Index Sets
	First-order Propagation Rules
	First-order Propagation: Example
	Toy Implementation: Global sparsity detection
	Toy Implementation: Demonstration
	Second-order Propagation Rules
	Sparsity Pattern Detection used to be the Bottleneck
	Automatic Differentiation in Julia
	DifferentiationInterface.jl
	Newton's method
	Implicit differentiation
	Jacobian benchmark: Implicit Differentiation

