
Leveraging Sparsity to Accelerate
Automatic Differentiation

Adrian Hill – BIFOLD, TU Berlin

github.com/adrhill
adrianhill.de

JuliaCon Local Paris
October 3rd, 2025

https://github.com/adrhill
https://adrianhill.de

Questions we will answer

• What is Automatic Differentiation (AD)?

• What is Automatic Sparse Differentiation (ASD)?

• Can ASD help you solve your problem?

• How can you use ASD?

2

Automatic Differentiation

Flavors of Differentiation

1. Manual: work out 𝑓 ′ by hand

2. Numeric: 𝑓 ′(𝑥) ≈ 𝑓(𝑥+𝜀)−𝑓(𝑥)
𝜀

3. Symbolic: code a formula for 𝑓 , get a formula for 𝑓 ′

4. Automatic: code a program for 𝑓 , get a value for 𝑓 ′(𝑥)

4

Automatic Differentiation [GW08]

• Programs are composition chains (or DAGs) of many functions

• For a composed function 𝑓 = ℎ ∘ 𝑔, the Jacobian 𝑱𝑓 |𝒙 at a point of linearization 𝒙
is given by the chain rule as

𝑱𝑓 |𝒙 = 𝑱ℎ|𝑔(𝒙) · 𝑱𝑔|𝒙

• Instead of materialized Jacobian matrices, AD uses matrix-free Jacobian operators

𝒟𝑓(𝒙) = 𝒟ℎ(𝑔(𝒙)) ∘ 𝒟𝑔(𝒙)

We represent matrix-free operators using dashed outlines, matrices and vectors with solid outlines

• Primary modes of evaluation of these operators: forward or reverse
5

Forward Mode

• Computes matrix-free
Jacobian-vector products (JVPs)

• Materializes Jacobians
column-by-column

𝒟𝑓(𝒙)(𝒆𝑗) = 𝑱𝑓 |𝒙 · 𝒆𝑗 = (𝑱𝑓 |𝒙):,𝑗
,

requiring as many JVPs as the
input dimensionality of 𝑓

6

Reverse Mode

• Computes matrix-free
vector-Jacobian products (VJPs)

• Materializes Jacobians row-by-row

𝒆𝑇
𝑖 · 𝑱𝑓 |𝒙 = (𝑱𝑓 |𝒙)𝑖,:

,

requiring as many VJPs as the
output dimensionality of 𝑓

• Special case: gradient of 𝑓 : ℝ𝑛 → ℝ
requires only a single VJP

7

Automatic Sparse
Differentiation

Automatic Sparse Differentiation

• Requirement: sparsity in Jacobian or Hessian

• Goal: materialize Jacobian or Hessian matrices
from matrix-free operators (JVPs / VJPs/ HVPs)
‣ can be more performant
‣ more memory efficient

• Applications: 2nd-order optimization,
root-finding, implicit differentiation
‣ direct solvers can be used

instead of matrix-free solvers

• Not useful for gradients
9

Key Ideas [CPR74]

Assuming we know the structure of the resulting
Jacobian matrix:

• Jacobian operators (JVPs, VJPs) are linear maps
and therefore additive

• We can simultaneously materialize multiple
structurally orthogonal columns (or rows) with a
single JVP (or VJP)

𝒟𝑓(𝒙)(𝒆𝑖 + … + 𝒆𝑗) = 𝒟𝑓(𝒙)(𝒆𝑖)⏟⏟⏟⏟⏟
(𝑱𝑓|𝒙)

:,𝑖

+ … + 𝒟𝑓(𝒙)(𝒆𝑗)⏟⏟⏟⏟⏟
(𝑱𝑓|𝒙)

:,𝑗

• We can then decompress resulting vectors into
the Jacobian matrix

10

Overview of ASD

Figure from [HD25]
11

Step 1:
Sparsity Pattern Detection

Sparsity Pattern Detection: Motivation

Problem: matrix-free Jacobian operators (JVPs, VJPs) are black-boxes

• without materializing Jacobian matrices, their structure is unknown

• if we fully materialize Jacobian matrices via “dense AD”, ASD isn’t needed

Solution: Implement a fast “boolean”-AD system

• compute sparsity pattern {(𝑖, 𝑗) ∣ 𝜕𝑓𝑖
𝜕𝑥𝑗

≠ 0} (“boolean Jacobian”)

• has to be faster than the computation of JVPs/VJPs ASD allows us to skip

13

Propagation of Index Sets [Wal08]
Idea: Represent rows of a sparse matrix by index sets of non-zero values

Sketch of procedure:
1. Seed inputs 𝑥𝑗 with index sets {𝑗}
2. Propagate index sets through compute graph according to chain rule
3. Index set of 𝑖-th output corresponds to 𝑖-th row of Jacobian {𝑗 ∣ 𝜕𝑓𝑖

𝜕𝑥𝑗
≠ 0}

14

SparseConnectivityTracer.jl [HD25]

• Jacobian and Hessian sparsity patterns
• Flexible pattern representations
• Global tracers
‣ no primal value
‣ almost no control flow
‣ fast and reusable patterns

• Local tracers
‣ include primal value
‣ support full control flow
‣ sparser patterns, not reusable

TLDR: Fast boolean ForwardDiff.jl
15

Step 2:
Matrix Coloring

Graph Coloring [GMP05]

Apply graph coloring algorithms to the sparsity pattern
to group together orthogonal (non-overlapping) columns/rows

• Correctness: guarantee structural orthogonality
• Efficiency: try to form the smallest number of groups (NP-hard!)

18

Coloring example: Infeasible

19

Coloring example: Suboptimal

Finding optimal colorings is NP-hard
20

SparseMatrixColorings.jl [MDG25]

• SotA methods from ColPack in Julia
‣ 6x shorter than C++ code
‣ similar performance

• Data structure and caching improvements
• New bicoloring algorithms
• Python bindings for non-believers

21

Further reading

• Plenty of prior work [CPR74, GR91, GW08, PT79], both on sparsity pattern
detection [DMM90, GUG95, Wal08, Wal12] and matrix coloring [GMP05]

• Basis for previous slides:

22

https://iclr-blogposts.github.io/2025/blog/sparse-autodiff/

Using ASD in Julia

DifferentiationInterface.jl

DifferentiationInterface.jl [DH25]

Common interface for most Julia AD backends:

ForwardDiff.jl

using DifferentiationInterface
import ForwardDiff

f(x) = diff(x .^ 2) + diff(reverse(x .^ 2))
x = [1.0, 2.0, 3.0, 4.0, 5.0]

jacobian(f, AutoForwardDiff(), x)

4×5 Matrix{Float64}:
 -2.0 4.0 0.0 8.0 -10.0
 0.0 -4.0 12.0 -8.0 0.0
 0.0 4.0 -12.0 8.0 0.0
 2.0 -4.0 0.0 -8.0 10.0

Enzyme.jl

using DifferentiationInterface
import Enzyme

f(x) = diff(x .^ 2) + diff(reverse(x .^ 2))
x = [1.0, 2.0, 3.0, 4.0, 5.0]

jacobian(f, AutoEnzyme(), x)

4×5 Matrix{Float64}:
 -2.0 4.0 0.0 8.0 -10.0
 0.0 -4.0 12.0 -8.0 0.0
 0.0 4.0 -12.0 8.0 0.0
 2.0 -4.0 0.0 -8.0 10.0

25

Composable first-order ASD

Compose AutoSparse backend, e.g. using Enzyme.jl,
SparseConnectivityTracer.jl and SparseMatrixColorings.jl:

backend = AutoEnzyme()

jacobian(f, backend, x) # AD

4×5 Matrix{Float64}:
 -2.0 4.0 0.0 8.0 -10.0
 0.0 -4.0 12.0 -8.0 0.0
 0.0 4.0 -12.0 8.0 0.0
 2.0 -4.0 0.0 -8.0 10.0

backend = AutoSparse(
 AutoEnzyme(),
 TracerSparsityDetector(), # from SCT
 GreedyColoringAlgorithm(), # from SMC
)
jacobian(f, backend, x) # ASD

4×5 SparseMatrixCSC{Float64, Int64}:
 -2.0 4.0 ⋅ 8.0 -10.0
 ⋅ -4.0 12.0 -8.0 ⋅
 ⋅ 4.0 -12.0 8.0 ⋅
 2.0 -4.0 ⋅ -8.0 10.0

Using preparation mechanism, sparsity detection & coloring can be amortized
26

Composable second-order ASD

Compute sparse Hessians by composing SecondOrder and AutoSparse :

using Differentiationterface
using SparseConnectivityTracer
using SparseMatrixColorings
import ForwardDiff
import ReverseDiff

dense_backend = SecondOrder(
 AutoForwardDiff(), # outer backend
 AutoReverseDiff() # inner backend
)

sparse_backend = AutoSparse(
 dense_backend,
 TracerSparsityDetector(), # from SCT
 GreedyColoringAlgorithm() # from SMC
)

julia> f(x) = sum(diff(x) .^ 2);
julia> x = [1.0, 2.0, 3.0, 4.0];

julia> hessian(f, dense_backend, x)
4×4 Matrix{Float64}:
 2.0 -2.0 0.0 0.0
 -2.0 4.0 -2.0 0.0
 0.0 -2.0 4.0 -2.0
 0.0 0.0 -2.0 2.0

julia> hessian(f, sparse_backend, x)
4×4 SparseMatrixCSC{Float64, Int64}:
 2.0 -2.0 ⋅ ⋅
 -2.0 4.0 -2.0 ⋅
 ⋅ -2.0 4.0 -2.0
 ⋅ ⋅ -2.0 2.0

27

Composable mixed-mode ASD

ASD can be accelerated further by coloring both rows and columns, combining
forward and reverse mode [CV98, HS98, MDG25]

Compose MixedMode ASD backend
from forward and reverse backends,
and use it in AutoSparse :

backend = AutoSparse(
 MixedMode(fw_backend, rev_backend);
 sparsity_detector,
 bicoloring_algorithm
)

jacobian(f, backend, x)

28

Benchmarks

Jacobian benchmark: Discretized Brusselator PDE

• Sparsity Pattern Detection used to be the Bottleneck
• Benchmark from [Gow+19]

30

Hessian benchmark: ACOPF

Hessian of Lagrangian of optimization problems from power systems
[Bab+21]

31

Joint work with

Guillaume Dalle Alexis Montoison
DI, SCT, SMC SMC

Thank you for your time!

32

Bibliography
Babaeinejadsarookolaee, S., Birchfield, A., Christie, R. D., Coffrin, C., DeMarco, C., Diao, R., Ferris,

M., Fliscounakis, S., Greene, S., Huang, R., Josz, C., Korab, R., Lesieutre, B., Maeght, J., Mak, T. W.
K., Molzahn, D. K., Overbye, T. J., Panciatici, P., Park, B., … Zimmerman, R. (2021, January). The
Power Grid Library for Benchmarking AC Optimal Power Flow Algorithms. arXiv. https://doi.
org/10.48550/arXiv.1908.02788

Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S., Llinares-Lopez, F., Pedregosa, F., & Vert,
J.-P. (2022). Efficient and Modular Implicit Differentiation. Advances in Neural Information
Processing Systems, 35, 5230–5242. https://proceedings.neurips.cc/paper_files/paper/2022/
hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html

Coleman, T. F., & Verma, A. (1998). The Efficient Computation of Sparse Jacobian Matrices Using
Automatic Differentiation. SIAM Journal on Scientific Computing, 19(4), 1210–1233. https://doi.
org/10.1137/S1064827595295349

Curtis, A. R., Powell, M. J. D., & Reid, J. K. (1974). On the Estimation of Sparse Jacobian Matrices.
IMA Journal of Applied Mathematics, 13(1), 117–119. https://doi.org/10.1093/imamat/13.1.117

Dalle, G., & Hill, A. (2025). A Common Interface for Automatic Differentiation. Arxiv Preprint
Arxiv:2505.05542.

Dixon, L. C. W., Maany, Z., & Mohseninia, M. (1990). Automatic differentiation of large sparse
systems. Journal of Economic Dynamics and Control, 14(2), 299–311. https://doi.org/10.1016/
0165-1889(90)90023-A

Gebremedhin, A. H., Manne, F., & Pothen, A. (2005). What Color Is Your Jacobian? Graph Coloring
for Computing Derivatives. SIAM Review, 47(4), 629–705. https://doi.org/10/cmwds4

Geitner, U., Utke, J., & Griewank, A. (1995,). Automatic Computation of Sparse Jacobians by
Applying the Method of Newsam and Ramsdell. https://www.semanticscholar.org/paper/
Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7
b7ac38cf0dd66aea47b

Gowda, S., Ma, Y., Churavy, V., Edelman, A., & Rackauckas, C. (2019, September). Sparsity
Programming: Automated Sparsity-Aware Optimizations in Differentiable Programming.
Program Transformations for ML Workshop at NeurIPS 2019. https://openreview.net/forum?
id=rJlPdcY38B

Griewank, A., & Reese, S. (1991). On the calculation of Jacobian matrices by the Markowitz rule
(Issue ANL/CP-75176; CONF-910189-4). https://www.osti.gov/biblio/10118065

Griewank, A., & Walther, A. (2008). Evaluating derivatives: principles and techniques of
algorithmic differentiation (2nd ed). Society for Industrial and Applied Mathematics. https://
epubs.siam.org/doi/book/10.1137/1.9780898717761

Gu, F., Chang, H., Zhu, W., Sojoudi, S., & El Ghaoui, L. (2020). Implicit graph neural networks. In H.
Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), Advances in neural
information processing systems: Vol. 33. Advances in neural information processing systems.
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.
pdf

Hill, A., & Dalle, G. (2025, January). Sparser, Better, Faster, Stronger: Efficient Automatic
Differentiation for Sparse Jacobians and Hessians. arXiv. https://doi.org/10.48550/arXiv.2501.
17737

Hossain, A. K. M. S., & Steihaug, T. (1998). Computing a sparse Jacobian matrix by rows and
columns. Optimization Methods and Software, 10(1), 33–48. https://doi.org/10.1080/
10556789808805700

Montoison, A., Dalle, G., & Gebremedhin, A. (2025). Revisiting Sparse Matrix Coloring and
Bicoloring. Arxiv Preprint Arxiv:2505.07308.

Powell, M. J. D., & Toint, \. P. L. (1979). On the Estimation of Sparse Hessian Matrices. SIAM Journal
on Numerical Analysis, 16(6), 1060–1074. https://doi.org/10.1137/0716078

Walther, A. (2008). Computing sparse Hessians with automatic differentiation. ACM Transactions
on Mathematical Software, 34(1), 1–15. https://doi.org/10.1145/1322436.1322439

Walther, A. (2012). On the Efficient Computation of Sparsity Patterns for Hessians. In S. Forth, P.
Hovland, E. Phipps, J. Utke, & A. Walther (Eds.), Recent Advances in Algorithmic
Differentiation: Recent Advances in Algorithmic Differentiation. https://doi.org/10.1007/978-3-
642-30023-3_13

33

https://doi.org/10.48550/arXiv.1908.02788
https://proceedings.neurips.cc/paper_files/paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/228b9279ecf9bbafe582406850c57115-Abstract-Conference.html
https://doi.org/10.1137/S1064827595295349
https://doi.org/10.1093/imamat/13.1.117
https://doi.org/10.1016/0165-1889(90)90023-A
https://doi.org/10.1016/0165-1889(90)90023-A
https://doi.org/10/cmwds4
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://www.semanticscholar.org/paper/Automatic-Computation-of-Sparse-Jacobians-by-the-of-Geitner-Utke/1ed218348fff39e9642d7b7ac38cf0dd66aea47b
https://openreview.net/forum?id=rJlPdcY38B
https://openreview.net/forum?id=rJlPdcY38B
https://www.osti.gov/biblio/10118065
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://epubs.siam.org/doi/book/10.1137/1.9780898717761
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/8b5c8441a8ff8e151b191c53c1842a38-Paper.pdf
https://doi.org/10.48550/arXiv.2501.17737
https://doi.org/10.48550/arXiv.2501.17737
https://doi.org/10.1080/10556789808805700
https://doi.org/10.1080/10556789808805700
https://doi.org/10.1137/0716078
https://doi.org/10.1145/1322436.1322439
https://doi.org/10.1007/978-3-642-30023-3_13
https://doi.org/10.1007/978-3-642-30023-3_13

Performant
Sparsity Pattern Detection

Revisiting Index Sets

• First-order: each scalar contains a set of indices {𝑖 | 𝜕𝑓
𝜕𝑥𝑖

≠ 0}

• Second-order: in addition to the first-order set,
each scalar contains a set of index tuples {(𝑖, 𝑗) | 𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
≠ 0}

These can be local or global.
35

First-order Propagation Rules

Let 𝛼(𝒙) and 𝛽(𝒙) be two intermediate scalar quantities in the computational graph of 𝑓(𝒙).
We compute a new scalar 𝛾(𝒙) by applying the two-argument operator 𝜑:

𝛾(𝒙) = 𝜑(𝛼(𝒙), 𝛽(𝒙))

According to the chain rule,

∇𝛾 = 𝜕1𝜑 · ∇𝛼 + 𝜕2𝜑 · ∇𝛽 .

Using the indicator function 𝟏[𝑥] = 𝟏𝑥≠0[𝑥] and ∨ for element-wise OR ,
and denoting the sparsity patterns of 𝛼 and 𝛽 as 𝟏[∇𝛼] and 𝟏[∇𝛽] respectively,

𝟏[∇𝛾] ≤ 𝟏[𝜕1𝜑] · 𝟏[∇𝛼] ∨ 𝟏[𝜕2𝜑] · 𝟏[∇𝛽] .

The propagation of first-order sparsity patterns by 𝜑 only depends on two values:

𝟏[𝜕1𝜑] 𝟏[𝜕2𝜑]

Based on [Wal08], notation from [HD25]
36

First-order Propagation: Example

Propagating index sets [Wal08]:

Computational graph for

𝑓(𝒙) = (𝑦1
𝑦2

) = (𝑥1𝑥2 + sign(𝑥3)
sign(𝑥3) ⋅ (𝑥4

2)).

Jacobian has 3 nonzero coefficients:

𝐽𝑓(𝒙) = (
𝑥2

0
𝑥1

0
0
0

0
sign(𝑥3)

2
)

37

Toy Implementation: Global sparsity detection

Operator overloading on new “tracer” number type:

import Base: +, *, /, sign

struct Tracer
 inds::Set{Int}
end

Tracer() = Tracer(Set{Int}())

+(a::Tracer, b::Tracer) = Tracer(a.inds ∪ b.inds)
*(a::Tracer, b::Tracer) = Tracer(a.inds ∪ b.inds)
/(a::Tracer, b::Int) = Tracer(a.inds)
sign(a::Tracer) = Tracer() # zero derivatives

38

Toy Implementation: Demonstration

Multiple dispatch: no code transformation needed

julia> f(x) = [x[1] * x[2] * sign(x[3]), sign(x[3]) * x[4] / 2];

julia> x = Tracer.(Set.([1, 2, 3, 4]))
4-element Vector{Tracer}:
 Tracer(Set([1]))
 Tracer(Set([2]))
 Tracer(Set([3]))
 Tracer(Set([4]))

julia> f(x)
2-element Vector{Tracer}:
 Tracer(Set([2, 1]))
 Tracer(Set([4]))

Matches expected pattern of 𝐽𝑓(𝒙) = (
𝑥2

0
𝑥1

0
0
0

0
sign(𝑥3)

2
).

39

Second-order Propagation Rules

Analogous to the previous slide, for operators 𝛾(𝒙) = 𝜑(𝛼(𝒙), 𝛽(𝒙)):
using ∨ for element-wise OR , 𝟏[𝑥] = 𝟏𝑥≠0[𝑥]

Propagation of sparsity patterns up to Hessians only depends on five
values:

𝟏[𝜕1𝜑] 𝟏[𝜕2𝜑] 𝟏[𝜕2
1𝜑] 𝟏[𝜕2

2𝜑] 𝟏[𝜕2
12𝜑]

Based on [Wal08], notation from [HD25]
40

Sparsity Pattern Detection used to be the Bottleneck

Jacobian bechmark on discretized Brusselator PDE from [Gow+19]
41

DifferentiationInterface

Automatic Differentiation in Julia

From to our JuliaCon 2024 talk “Gradients for everyone”:

Julia has dozens of AD backends:
• each with different strengths, caveats ← DI can’t fix those
• each with their own syntax ← but DI can fix this

43

https://www.youtube.com/watch?v=ww3ntpyxNtI

DifferentiationInterface.jl [DH25]

Common interface for 13 AD backends
• Operators:
‣ high-level: gradient , jacobian , hessian , derivative ,

second_derivative
‣ lower-level: pushforward (JVP), pullback (VJP), hvp

• Variants:
‣ out-of-place y = f(x) or in-place f!(y, x)
‣ with or without primal (e.g. value_and_gradient)

• “Context arguments”: constants and caches
• Preparation mechanisms

44

Applications

Newton’s method

Root-finding

Solve 𝐹(𝑥) = 0 by iterating

𝑥𝑡+1 = 𝑥𝑡 − [𝜕𝐹(𝑥𝑡)]⏟
Jacobian

−1𝐹(𝑥𝑡)

Optimization

Solve min 𝑓(𝑥) by iterating

𝑥𝑡+1 = 𝑥𝑡 − [∇2𝑓(𝑥𝑡)]⏟⏟⏟⏟⏟
Hessian

−1∇𝑓(𝑥𝑡)

Linear systems involving a derivative matrix 𝐴.

46

Implicit differentiation

• Differentiate 𝑥 → 𝑦(𝑥) knowing optimality conditions 𝑐(𝑥, 𝑦(𝑥)) = 0.

• Applications: fixed-point iterations, optimization problems.

• Implicit function theorem [Blo+22]:

𝜕1𝑐(𝑥, 𝑦(𝑥)) + 𝜕2𝑐(𝑥, 𝑦(𝑥)) ⋅ 𝜕𝑦(𝑥) = 0

𝜕𝑦(𝑥) = −[𝜕2𝑐(𝑥, 𝑦(𝑥))]⏟⏟⏟⏟⏟
Jacobian

−1𝜕1𝑐(𝑥, 𝑦(𝑥))

Linear system involving a derivative matrix 𝐴.

47

Jacobian benchmark: Implicit Differentiation

Implitic Graph Neural Networks [Gu+20]
48

	Questions we will answer
	Flavors of Differentiation
	Automatic Differentiation
	Forward Mode
	Reverse Mode
	Automatic Sparse Differentiation
	Key Ideas
	Overview of ASD
	Sparsity Pattern Detection: Motivation
	Propagation of Index Sets
	SparseConnectivityTracer.jl
	SparseConnectivityTracer.jl
	Graph Coloring
	Coloring example: Infeasible
	Coloring example: Suboptimal
	SparseMatrixColorings.jl
	Further reading
	DifferentiationInterface.jl
	Composable first-order ASD
	Composable second-order ASD
	Composable mixed-mode ASD
	Jacobian benchmark: Discretized Brusselator PDE
	Hessian benchmark: ACOPF
	Joint work with
	Bibliography
	Revisiting Index Sets
	First-order Propagation Rules
	First-order Propagation: Example
	Toy Implementation: Global sparsity detection
	Toy Implementation: Demonstration
	Second-order Propagation Rules
	Sparsity Pattern Detection used to be the Bottleneck
	Automatic Differentiation in Julia
	DifferentiationInterface.jl
	Newton's method
	Implicit differentiation
	Jacobian benchmark: Implicit Differentiation

